Tolerating Losses for Growth: How US Venture Capitalists Invest Abroad

Thomas Hellmann Alexander Montag Joacim Tåg May 16th, 2024

Saïd Business School

Indiana University and IFN

IFN and Hanken (www.jtag.se)

Introduction

Motivation

- A fundamental challenge for start-ups is the trade-off between short-term profitability and long-term growth
- Often more ambitious development or growth strategies involve lower short-term profitability (e.g. Spotify, Uber)
- Requires investors that are willing to tolerate prolonged financial losses and imposes financing risk on start-ups (Nanda and Rhodes-Kropf 2023, 2017)
- Debate in EU about lack of unicorns and VCs that are "playing it too safe"

Research question

- Question: What determines loss tolerance in VC investing?
 - What are key factors determining loss tolerance (depth of J-curves)?
 - What are the implications for company growth and exits?
 - Do certain VCs have a more "loss tolerant style" in investing?
- Our approach:
 - Develop a theory of loss tolerance in VC investing
 - Take the predictions to Swedish data, in which we can measure the rate of burn
 - Empirically analyze if US VCs have a more "loss tolerant style" in investing

Contribution #1

Staged financing and financing risk

- Staged financing (binary choice) Sahlman 1990; Gompers 1995; Neher 1999; Kerr et al 2014
- Financing risk and innovation incentives Nanda and Rhodes-Kropf 2013, 2017
- Failure tolerance in VC Tian and Wang 2011; Ewens et al 2018
- VC funding and portfolio company productivity Chemmanur et al 2011; Puri and Zarutskie 2012; Croce et al 2013; Chemmanur et al. 2018
- We develop (and document) the concept of loss tolerance in VC investing
- Continuous short-run losses allows an analysis of burn rates and J-curves ("fund use" vs "fund raising")

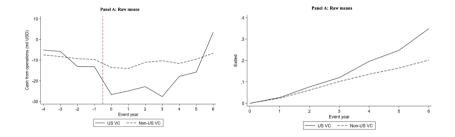
Contribution #2

• Foreign vs domestic VCs

• Differences between domestic and foreign VCs

Large and growing literature, see for example Devigne et al. 2018

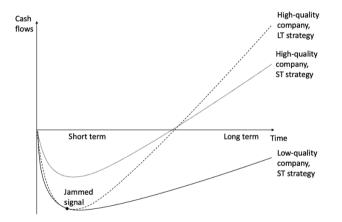
• Differences between US vs non-US VCs


Conti and Guzman 2019; Lerner and Tåg 2013; Hege, Palomino, and Schwienbacher 2009

• Role of scale-ups

Hellmann and Thiele 2024; Norbäck, Persson, and Tåg 2024

- We develop (and document) the concept of loss tolerance in VC investing
 - Relate investor origin to investment behavior
 - US investors have a more "loss tolerant style" relative to non-US investors


Preview of results

- US VCs have a more loss tolerant investment style than non-US VCs
 - Incur more losses (higher burn), especially in the short run (deeper J-curve)
 - Eventually raise more funding, have better growth, and exit outcomes
 - Have the same failure rates

Theory

Intuition

Key problem: How much short-term losses can a company afford to have before being considered of too low quality to be worthy of the next investment round?

Outline

• Purpose of model

- Introduce the key tension between short- vs long-term investments ("depth" of J-curves)
- Derive condition under which loss tolerance is high vs low
- Frame the empirical analysis that compares US vs non-US investments

• Building blocks

- Staged financing (Sahlman 1990)
- Signal jamming with short-term profits (Stein 1989)
- Financing risk (Nanda and Rhodes-Kropf 2013)

Components

- One entrepreneur (*E*) and one investor (*I*). Both are risk neutral.
- Three periods, no discounting:
 - 1. Initial investment K_0 by *I* and strategy choice β by *E*. The entrepreneurs stake is γ .
 - 2. Short-term losses $L(\sigma) = K_0 R(\sigma)$ with $\sigma = \theta + \beta$. Reinvestment choice K_1 by *I*, observing only signal σ and not strategy choice β .
 - 3. Long-term profits realized: $\pi = \alpha(\theta)(1 \beta)x$.
- Key exogenous parameter is x, which represents
 - exit opportunities (IPO/MnA)
 - failure values
 - further refinancing/financing risk

Solving the model

- Three equilibrium conditions
 - 1. Entrepreneur sets β^* to maximize profits (FOC)
 - 2. The investor forms expectations $\hat{\beta}$ and makes a reinvestment choice: $L(\sigma) \leq L(\hat{\sigma})$
 - 3. Expectations are rational: $\beta^* = \hat{\beta}$
- Assume some specific functional forms
 - $\alpha(\theta) = 1 exp(-\vartheta\theta)$
 - $R(\sigma) = r(1 exp(-\rho\sigma))$
 - θ is negative exponential with density $\omega(\theta) = \lambda exp(-\lambda \theta)$

Timing

	→ Time
t=1	t=2
Realization of quality θ Jammed signal $\sigma = \theta + \beta$	Realization of returns $\pi = \alpha(1-\beta)x$
Short-term revenue R(σ)	
Short term losses $L = K_0 - R$	α(θ) quality (1-β) long-term strategy
Investors invest K ₁ provided	x = exit value
	(also financing risk)
(Equilibrium condition #2)	Fixed investor stake γ
Rational expectations $\beta^{e} = \beta^{*}$	
	Realization of quality θ Jammed signal $\sigma = \theta + \beta$ Short-term revenue $R(\sigma)$ Short term losses $L = K_0 - R$ Investors invest K_1 provided short-term losses not too large: $L(\sigma) \le L(\sigma^{\Lambda})$ (Equilibrium condition #2)

Key predictions

- Prediction #1:
 - Higher *x* make the investor more loss-tolerant
 - "Better long-term prospects, less concern for short-term losses"
- Prediction #2:
 - Higher x allow the entrepreneurs greater focus on the long-term
 - "E more reluctant to give up long-term profits to boost short-term profits"
- Prediction #3:
 - Higher *x* increase the probability of refinancing
 - "Since E is more reluctant, this signals better expected exit values"

Data

- **Challenge:** Need a credible measure of financial losses for VC-backed companies and "random" allocation of US VC (investors we take to have higher *x*)
- **Solution:** Private Swedish limited liability companies must submit annual reports to Swedish Companies Registration Office by law (independently of listing status)
 - Construct company-fiscal year panel for companies that ever receive VC funding
 - Compare companies that get VC funding from US and benchmark non-US investors around investments for multiple outcomes (DiD, take inspiration from PE buyout lit.)
 - Ideal: conditional on investment, US or non-US investing is "random" with respect to trends in outcomes over time

- Principal data source: Swedish Companies Registration Office
 - Annual reports and company events (e.g., bankruptcies)
 - VC investments and exit events from Crunchbase, Pitchbook, ThomsonOne, and Preqin
 - Data on population of Swedish limited liability companies between 1998 and 2020
 - Must submit annual reports to the Companies Registration Office (by law)
 - Focus on firms that receive VC investments and that are at least 2 years old
- Sample construction:
 - Take each cohort separately and pick up US and non-US investments
 - Create panels for each cohort
 - Append/stack the panels together

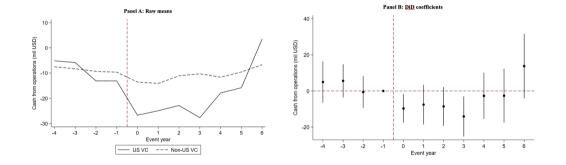
$$Y_{f,k,t} = \alpha + \pi A fter_k + \gamma USVC_f + \beta A fter_k \times USVC_f + \epsilon_{f,k,t}$$
(1)

- Notes:
 - "Treatment": Initial US VC funding in a given year
 - "Benchmark": Non-US VC funding in the same year and do not have US VC
 - Normalized event time with investment at 0
 - Follow companies for up to 6 years post-treatment
 - Data consists of 11.5k company-year observations of 863 VC backed companies
 - Cluster at company times cohort level
 - Robustness: Callaway and Sant'Anna DiD

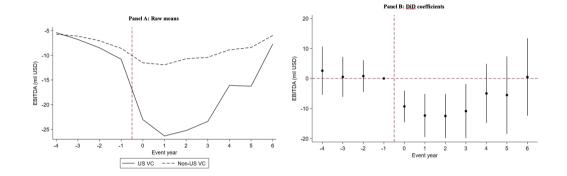
	(1)	(2)	(3)	(4)	(5)
	Full	US VC	Non-US VC	Difference	t-statistic
Operating cash (mil SEK)	-9.923	-13.111	-9.628	-3.482	(-1.033)
EBITDA (mil SEK)	-8.787	-10.806	-8.601	-2.205	(-0.854)
Sales (mil SEK)	69.514	42.354	72.024	-29.670	(-1.502)
Foreign subsidiary dummy	0.200	0.189	0.201	-0.012	(-0.315)
Employees	44.883	40.523	45.286	-4.764	(-0.311)
Assets (mil SEK)	65.004	86.931	62.978	23.953	(0.830)
VC backed	0.389	0.342	0.394	-0.051	(-1.087)
Observations	1,312	111	1,201	1,312	

Identification

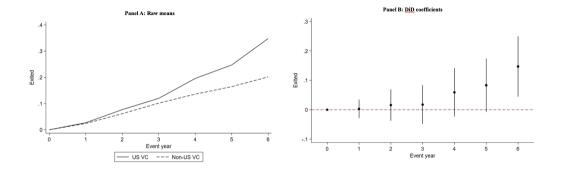
Parallel trends


- No difference in means of observables prior to investment
- Parallel pre-trends for multiple observables correlated with venture quality
- No spillover effects (SUTVA)
 - · Individual deals small compared to overall market

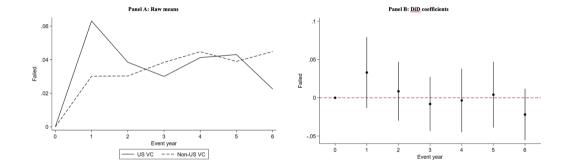
Note on unobserved potential to scale


- Must be invisible in all pre-levels and pre-trends
- Must apply only to US, but not to non-US
- Results hold vs Sweden and vs non-Sweden non-US

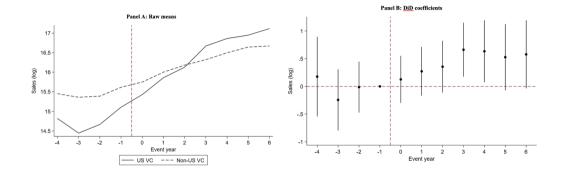
Results


Cash from operations

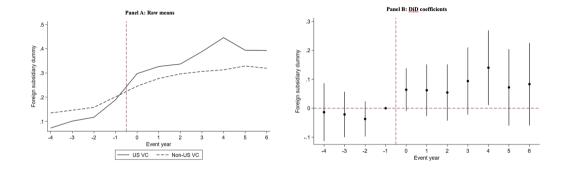
EBITDA

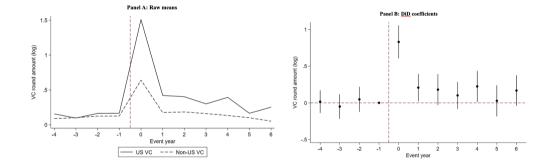


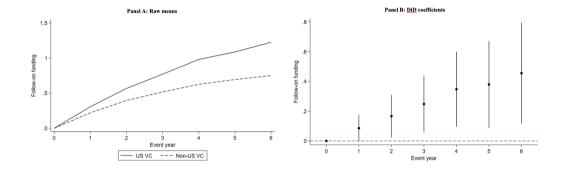
Exits

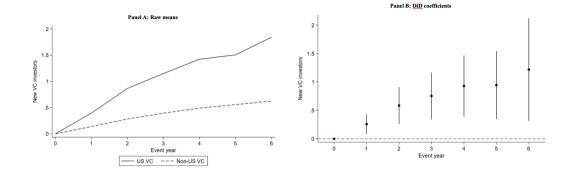


- Mean US VC backed Exit (IPO): \$572M (\$454M)
- Mean non-US VC backed Exit (IPO): \$220M (\$165M)


Failures


Sales

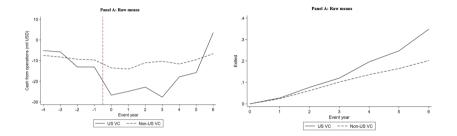

Foreign subsidiaries


Funding

Follow-on funding

New investors

Panel B: Short- vs long-term effects						
	(1)	(2)	(3)	(4)	(5)	(6)
	Cash from	EBITDA	Sales (log)	Foreign	Employment	VC round
	operations			subsidiary	(log)	amount
				dummy		(log)
US VC	-1.6815	-1.6728	-0.4837**	-0.0364	-0.1399	0.0469
	(-0.479)	(-0.633)	(-2.152)	(-1.014)	(-0.984)	(1.220)
PostST	-3.1875***	-3.3120***	0.3096***	0.0988***	0.2055***	0.1813***
	(-4.707)	(-5.560)	(6.294)	(10.442)	(7.245)	(14.463)
PostLT	-0.2412	0.0013	0.7843***	0.1387***	0.4064***	-0.0237*
	(-0.216)	(0.001)	(10.581)	(9.635)	(9.298)	(-1.719)
US VC #PostST	-11.3642***	-11.7539***	0.3699*	0.0810^{*}	0.3555***	0.3527***
	(-2.718)	(-3.786)	(1.854)	(1.952)	(3.297)	(5.534)
US VC #PostLT	0.4233	-4.2042	0.6179**	0.1145*	0.3197*	0.1360
	(0.074)	(-0.724)	(2.096)	(1.846)	(1.866)	(1.599)
Cohort FEs	Yes	Yes	Yes	Yes	Yes	Yes
Observations	11,310	11,310	11,310	11,310	11,310	11,310
Adjusted R ²	0.014	0.018	0.847	0.034	0.314	0.045
ST effect size (%)	107	127	3	55	17	208
LT effect size (%)	-4	45	5	78	16	80


Panel C: Post-period only regressions						
	(1)	(2)	(3)	(4)	(5)	
	Exited	Failed	Follow-on	New VC	Old VC	
			rounds	investors	investors	
US VC	0.0510**	0.0036	0.2043**	0.6079***	0.3169**	
	(2.132)	(0.390)	(2.357)	(3.211)	(2.077)	
Cohort FEs	Yes	Yes	Yes	Yes	Yes	
Observations	8,460	8,460	8,460	8,460	8,460	
Adjusted R ²	0.010	0.002	0.052	0.026	0.037	
Effect size (%)	52	11	44	154	60	

Robustness

Panel A: Cash Panel B: EBITDA 20 40 10 20 ATT Pre-treatment ATT re-treatment Poet-treatment Post-treatment 0 -10 -20 -20 -2 -4 -2 2 à 6 -4 Periods to Treatment Periods to Treatment

- Also robust to:
 - Restricting to firm age 3 or 4 and more
 - Adding FE for firm age, industry, location
 - Controlling for company observables measured at t = -1 (assets, sales ect.)

Takeaways

- We develop and document the concept of "loss tolerance" in VC
- US VCs have a more loss tolerant investment style than non-US VCs
 - Incur more losses (higher burn), especially in the short run (deeper J-curve)
 - Eventually raise more funding, have better growth, and exit outcomes
 - Have the same failure rates

The bigger picture

- US VC investors play a prominent role internationally in funding unicorns
 - Why are European VC investors not more aggressive in scaling startups?
 - Our results suggest that loss tolerance may be a key element
- To encourage more loss tolerance, ecosystems need higher *x*:
 - · Investors with connections to good exit markets and follow-on funding
 - Diversity in investor type and stage focus (lowers financing risk)