Tolerating Losses for Growth: J-curves in Venture Capital Investing

Thomas Hellmann Alexander Montag Joacim Tåg June 10th, 2024

Saïd Business School

Indiana University and IFN

IFN and Hanken (www.jtag.se)

Introduction

Motivation

• Venture capital is a key driver of innovation and growth through efficient capital allocation (Lerner and Nanda 2020)

Motivation

- Venture capital is a key driver of innovation and growth through efficient capital allocation (Lerner and Nanda 2020)
- A fundamental challenge for VC-backed start-ups is the trade-off between short-term profitability and long-term growth

Motivation

- Venture capital is a key driver of innovation and growth through efficient capital allocation (Lerner and Nanda 2020)
- A fundamental challenge for VC-backed start-ups is the trade-off between short-term profitability and long-term growth
- Often more ambitious development or growth strategies involve lower short-term profitability, i.e. a **J-curve** (e.g. Spotify, Uber)

- Venture capital is a key driver of innovation and growth through efficient capital allocation (Lerner and Nanda 2020)
- A fundamental challenge for VC-backed start-ups is the trade-off between short-term profitability and long-term growth
- Often more ambitious development or growth strategies involve lower short-term profitability, i.e. a **J-curve** (e.g. Spotify, Uber)
- Requires investors that are willing to tolerate **prolonged financial losses** and imposes **financing risk** on start-ups (Nanda and Rhodes-Kropf 2023, 2017)

Research question

- Massive literature on VC fundraising and capital allocation (Da Rin and Hellmann 2020)
- This paper: First look at the dynamics of capital use in VC investing

Research question

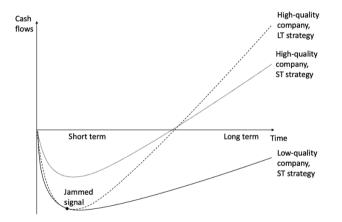
- Massive literature on VC fundraising and capital allocation (Da Rin and Hellmann 2020)
- This paper: First look at the dynamics of capital use in VC investing
- Question: What determines J-curves (or "loss tolerance") in VC investing?
 - What are key factors determining the depth of J-curves?
 - Is there evidence of heterogeneity in J-curves across VC investors?

- Massive literature on VC fundraising and capital allocation (Da Rin and Hellmann 2020)
- This paper: First look at the dynamics of capital use in VC investing
- Question: What determines J-curves (or "loss tolerance") in VC investing?
 - What are key factors determining the depth of J-curves?
 - Is there evidence of heterogeneity in J-curves across VC investors?

• Approach:

- 1. Develop a theory of J-curves and "loss tolerance" in VC investing
- 2. Take predictions to Swedish data, where we can measure J-curves
- 3. Show evidence of deeper J-curves for US vs non-US investors

Related literature


- Staged financing and financing risk:
 - Staged financing Sahlman 1990; Gompers 1995; Neher 1999; Kerr et al 2014
 - Financing risk and innovation incentives Nanda and Rhodes-Kropf 2013, 2017
 - Failure tolerance in VC Tian and Wang 2011; Ewens et al 2018
 - VC funding and portfolio company productivity Chemmanur et al 2011; Puri and Zarutskie 2012; Croce et al 2013; Chemmanur et al. 2018
 - The role of scale-ups (Hellmann and Thiele 2023; Norbäck, Persson, and Tåg 2024)

• Contribution:

- First theory of J-curves: continuous short-run losses allows an analysis of J-curves
- First **empirical evidence** of J-curves and how they vary across US vs non-US investors

Theory

Intuition

Key problem: How much short-term losses can a company afford to have before being considered of too low quality to be worthy of the next investment round?

Outline

• Purpose of model:

- Introduce the key tension between short- vs long-term investments ("depth" of J-curves)
- Derive condition under which loss tolerance is high vs low

• Building blocks:

- Staged financing (Sahlman 1990)
- Signal jamming with short-term profits (Stein 1989)
- Financing risk (Nanda and Rhodes-Kropf 2013)

• **Players:** One entrepreneur (*E*) and one investor (*I*). Both are risk neutral.

- **Players:** One entrepreneur (*E*) and one investor (*I*). Both are risk neutral.
- **Timing:** Three periods, no discounting:

- **Players:** One entrepreneur (*E*) and one investor (*I*). Both are risk neutral.
- Timing: Three periods, no discounting:
 - 1. Initial investment K_0 by *I* and strategy choice β by *E*. The entrepreneurs stake is γ .

- **Players:** One entrepreneur (*E*) and one investor (*I*). Both are risk neutral.
- Timing: Three periods, no discounting:
 - 1. Initial investment K_0 by *I* and strategy choice β by *E*. The entrepreneurs stake is γ .
 - 2. Short-term losses $L(\sigma) = K_0 R(\sigma)$ with $\sigma = \theta + \beta$. Reinvestment choice K_1 by *I*, observing only signal σ and not strategy choice β .

- **Players:** One entrepreneur (*E*) and one investor (*I*). Both are risk neutral.
- Timing: Three periods, no discounting:
 - 1. Initial investment K_0 by *I* and strategy choice β by *E*. The entrepreneurs stake is γ .
 - 2. Short-term losses $L(\sigma) = K_0 R(\sigma)$ with $\sigma = \theta + \beta$. Reinvestment choice K_1 by *I*, observing only signal σ and not strategy choice β .
 - 3. Long-term profits realized: $\pi = \alpha(\theta)(1 \beta)x$.

- **Players:** One entrepreneur (*E*) and one investor (*I*). Both are risk neutral.
- Timing: Three periods, no discounting:
 - 1. Initial investment K_0 by *I* and strategy choice β by *E*. The entrepreneurs stake is γ .
 - 2. Short-term losses $L(\sigma) = K_0 R(\sigma)$ with $\sigma = \theta + \beta$. Reinvestment choice K_1 by *I*, observing only signal σ and not strategy choice β .
 - 3. Long-term profits realized: $\pi = \alpha(\theta)(1 \beta)x$.
- Key exogeneous parameter: x, which represents *l*-specific access to:
 - exit markets
 - product markets
 - networks (funding, follow-on funding, and new investors)

Solving the model

• Three equilibrium conditions:

- 1. Entrepreneur sets β^* to maximize profits (FOC)
- 2. The investor forms expectations $\hat{\beta}$ and makes a reinvestment choice: $L(\sigma) \leq L(\hat{\sigma})$
- 3. Expectations are rational: $\beta^* = \hat{\beta}$
- Assume some specific functional forms:
 - $\alpha(\theta) = 1 exp(-\vartheta\theta)$
 - $R(\sigma) = r(1 exp(-\rho\sigma))$
 - θ is negative exponential with density $\omega(\theta) = \lambda exp(-\lambda \theta)$

Timing

		→ Time
t=0	t=1	t=2
Investment K ₀	Realization of quality θ Jammed signal $\sigma = \theta + \beta$	Realization of returns $\pi = \alpha(1-\beta)x$
After t=0 entrepreneurs	Short-term revenue R(σ)	
sets optimal short-term strategy β*	Short term losses $L = K_0 - R$	α(θ) quality (1-β) long-term strategy
(Equilibrium condition #1)	Investors invest K_1 provided short-term losses not too large: L(σ) ≤ L(σ ^)	x = exit value (also financing risk)
	(Equilibrium condition #2)	Fixed investor stake y
	Rational expectations $\beta^e = \beta^*$ (Equilibrium condition #3)	

Key proposition/prediction on *x*

- Higher *x* allows the entrepreneur to be more focused on a long-term strategy:
 - The equilibrium choice of β^* is decreasing in x
 - "E more reluctant to give up long-term profits to boost short-term profits"
- Higher *x* makes the investor more loss tolerant (the J-curve deeper):
 - The equilibrium loss tolerance $L(\hat{\sigma})$ is increasing in x
 - Thus, the probability of refinancing is also increasing in *x*
 - "Better long-term prospects, less concern for short-term losses"

Evidence

Structure of analysis

• Objective:

- Provide evidence that J-curves are real
- Show evidence of heterogeneity in loss tolerance w.r.t. x
- We focus on heterogeneity across US vs non-US investors in Sweden
- Assumption is that experienced US investors investing abroad have higher x:
 - Better access to exit markets
 - Better access to the global product market
 - Better access to networks (funding, follow-on funding, and new investors)

Structure of analysis

- Objective is **NOT** to show that US VCs causally leads to deeper J-curves
- Theory silent on sorting effects vs causal effects
- US VC investors in Sweden likely to strongly sort on unobservables:
 - Time varying ability to scale abroad
 - Unobservable entrepreneur characteristics
 - Unobservable prior VC involvement (e.g. Creandum ties to US)
- Also the issue of "treatment-induced" selection:
 - US VCs select startups because they have the potential to scale under "loss tolerant" investors, **but not otherwise**
 - Startups would not have scaled in the absence of US VC involvement

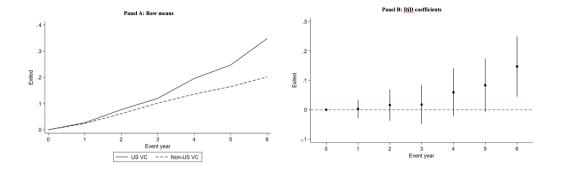
Data and empirical approach

- Principal data source: Swedish Companies Registration Office
 - Annual reports and company events (e.g., bankruptcies)
 - VC investments and exits from Crunchbase, Pitchbook, ThomsonOne, and Preqin
 - Data on population of Swedish limited liability companies between 1998 and 2020
 - Must submit annual reports to the Companies Registration Office (by law)
 - Focus on firms that receive VC investments and that are at least 2 years old
 - · Construct company-fiscal year panel for companies that ever receive VC funding

Data and empirical approach

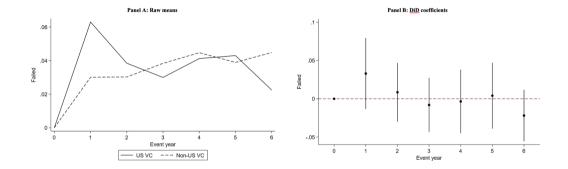
- Principal data source: Swedish Companies Registration Office
 - Annual reports and company events (e.g., bankruptcies)
 - VC investments and exits from Crunchbase, Pitchbook, ThomsonOne, and Preqin
 - Data on population of Swedish limited liability companies between 1998 and 2020
 - Must submit annual reports to the Companies Registration Office (by law)
 - Focus on firms that receive VC investments and that are at least 2 years old
 - Construct company-fiscal year panel for companies that ever receive VC funding
- **Approach:** Compare companies that get VC funding from US and non-US investors in each year
 - Take each cohort separately and pick up first US VC investment vs non-US VC investments for companies not currently US VC-backed.
 - Create panels for each cohort
 - Append/stack the panels together

	(1)	(2)	(3)	(4)	(5)
	Full	US VC	Non-US VC	Difference	t-statistic
Operating cash (mil SEK)	-9.923	-13.111	-9.628	-3.482	(-1.033)
EBITDA (mil SEK)	-8.787	-10.806	-8.601	-2.205	(-0.854)
Sales (mil SEK)	69.514	42.354	72.024	-29.670	(-1.502)
Foreign subsidiary dummy	0.200	0.189	0.201	-0.012	(-0.315)
Employees	44.883	40.523	45.286	-4.764	(-0.311)
Assets (mil SEK)	65.004	86.931	62.978	23.953	(0.830)
VC backed	0.389	0.342	0.394	-0.051	(-1.087)
Observations	1,312	111	1,201	1,312	

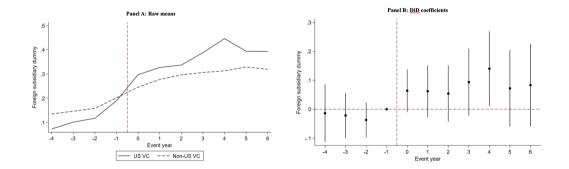

$$Y_{f,k,t} = \alpha + \pi A fter_k + \gamma USVC_f + \beta A fter_k \times USVC_f + \epsilon_{f,k,t}$$
(1)

• Details:

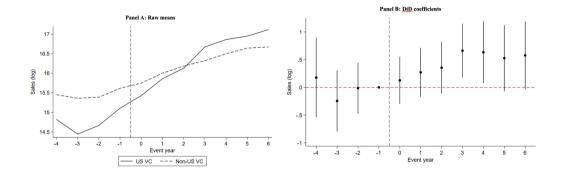
- "Treatment": Initial "US VC" funding in a given year
- "Benchmark": "Non-US VC" funding in the same year and do not have US VC
- Normalized event time with investment at 0
- Follow companies for up to 6 years post-treatment
- Cluster at company times cohort level

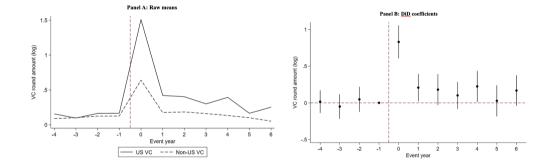

Do US investors have higher *x***?**

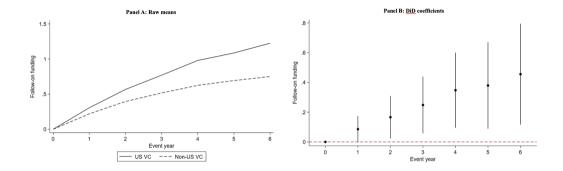
Exit market access: Exits

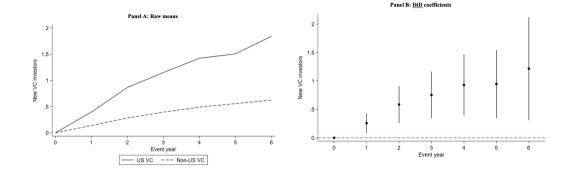


- Mean US VC backed Exit (IPO): \$572M (\$454M)
- Mean non-US VC backed Exit (IPO): \$220M (\$165M)

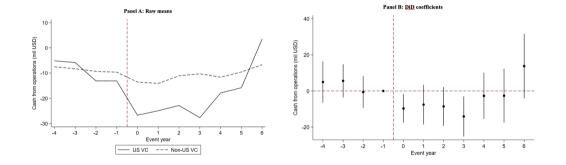

Not just about more risk-taking: Failures


Product market access: Foreign subsidiaries

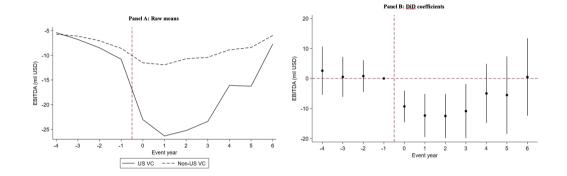

Product market access: Sales


Networks: Funding

Networks: Follow-on funding



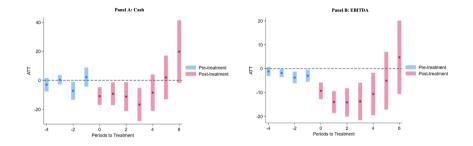
Networks: New investors



Do US investors have deeper J-curves (higher loss tolerance)?

Cash from operations

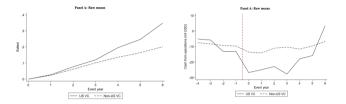
EBITDA



Magnitudes and robustness

Panel B: Short- vs long-term effects						
	(1)	(2)	(3)	(4)	(5)	(6)
	Cash from	EBITDA	Sales (log)	Foreign	Employment	VC round
	operations			subsidiary	(log)	amount
				dummy		(log)
US VC	-1.6815	-1.6728	-0.4837**	-0.0364	-0.1399	0.0469
	(-0.479)	(-0.633)	(-2.152)	(-1.014)	(-0.984)	(1.220)
PostST	-3.1875***	-3.3120***	0.3096***	0.0988***	0.2055***	0.1813***
	(-4.707)	(-5.560)	(6.294)	(10.442)	(7.245)	(14.463)
PostLT	-0.2412	0.0013	0.7843***	0.1387***	0.4064***	-0.0237*
	(-0.216)	(0.001)	(10.581)	(9.635)	(9.298)	(-1.719)
US VC #PostST	-11.3642***	-11.7539***	0.3699*	0.0810^{*}	0.3555***	0.3527***
	(-2.718)	(-3.786)	(1.854)	(1.952)	(3.297)	(5.534)
US VC #PostLT	0.4233	-4.2042	0.6179**	0.1145*	0.3197*	0.1360
	(0.074)	(-0.724)	(2.096)	(1.846)	(1.866)	(1.599)
Cohort FEs	Yes	Yes	Yes	Yes	Yes	Yes
Observations	11,310	11,310	11,310	11,310	11,310	11,310
Adjusted R ²	0.014	0.018	0.847	0.034	0.314	0.045
ST effect size (%)	107	127	3	55	17	208
LT effect size (%)	-4	45	5	78	16	80

Panel C: Post-period only regressions						
	(1)	(2)	(3)	(4)	(5)	
	Exited	Failed	Follow-on	New VC	Old VC	
			rounds	investors	investors	
US VC	0.0510**	0.0036	0.2043**	0.6079***	0.3169**	
	(2.132)	(0.390)	(2.357)	(3.211)	(2.077)	
Cohort FEs	Yes	Yes	Yes	Yes	Yes	
Observations	8,460	8,460	8,460	8,460	8,460	
Adjusted R ²	0.010	0.002	0.052	0.026	0.037	
Effect size (%)	52	11	44	154	60	


Robustness

- Also robust to:
 - Restricting to firm age 3 or 4 and more
 - Adding FE for firm age, industry, location
 - Controlling for company observables measured at t = -1 (assets, sales ect.)
 - US vs Sweden, US vs non-US (excluding Sweden)

Takeaways

Takeaways

- We develop a **theory** and provide **empirical evidence** for J-curves and "loss tolerance" in VC investing
- US VCs are more loss tolerant than non-US VCs:
 - Higher *x*: better access to exit markets, product markets, networks (funding, follow-on funding, new investors)
 - Have deeper J-curves (incur more losses, especially in the short run)

The bigger picture

- Debate in EU about lack of unicorns and VCs that are "playing it too safe"
- US VC investors play a prominent role internationally in funding unicorns
 - Why are European VC investors not more aggressive in scaling startups?
 - Our results suggest that loss tolerance may be a key element
- To encourage more loss tolerance (deeper J-curves), ecosystems need higher investors with higher *x*:
 - Investors with connections to good exit markets and follow-on funding
 - Diversity in investor type and stage focus (lowers financing risk and increses follow-on funding)