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Motivation and Research Question
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Motivation

• Venture capital is a key driver of innovation and growth (Lerner and Nanda 2020)

• A fundamental challenge for VC-backed startups is the trade-off between
short-term profitability and long-term growth

• Often more ambitious development or growth strategies involve lower short-term
profitability, i.e. a J-curve (e.g. Spotify, Uber)

• Requires investors that are willing to tolerate prolonged financial losses and
imposes financing risk on startups (Nanda and Rhodes-Kropf 2023, 2017)

• Practitioners frequently argue that US VCs are more loss-tolerant than other
VCs
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Motivation

“The problem is not that Europe lacks ideas or ambition.(...) But innovation is blocked
at the next stage: we are failing to translate innovation into commercialisation, and
innovative companies that want to scale up in Europe are hindered at every stage (...).”

– Draghi (2024)
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Research question

• Massive literature on VC fundraising and capital allocation (Da Rin and Hellmann 2020)

• This paper: First look at the dynamics of capital use in VC investing

• Question: Do USVCs have deeper J-curves compared to non-USVC
investors? And why?
• Challenge: Cash flow data is not available + non-random nature of VC investments

• Our solution: Swedish registry data + stacked DiD design

• So what? Helps policymakers design better policies and stakeholders understand
the industry better
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Data and Identification
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Data

• Cashflow data: Swedish Companies Registration Office
• Companies must submit annual reports to the Companies Registration Office

• Data on population of Swedish limited liability companies between 1998 and 2023

• Annual reports and company events (e.g., bankruptcies)

• VC data: Crunchbase, Pitchbook, and VentureXpert
• Investments and exits

• VC firm characteristics (size, experience, LPs, etc)

• VC firm country of origin

• Exclude GVC

• Data aggregation:
• Construct company-year panel for companies that ever receive VC funding
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Estimation strategy

• Stacked differences-in-differences estimator combined with matching:
• Matching allows us to account for sorting on observables (identical industry, stage,

and quartiles in EBITDA and number of employees)

• The stacked DiD estimator avoids biases in TWFE estimations

• Allows us to compare USVC investments to non-USVC investments

• Key identifying assumptions:
• Parallel trends in absence of treatment

• SUTVA (no spillover effects)

• Need to account for:
• Matching on outcome level differences may create RTM bias (Daw and Hatfield 2018)

• Weighting and aggregation of cohort estimates (Wing et al. 2024)
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Sample descriptives

(1) (2) (3) (4) (5)
Full US VC Non-US VC Difference t-statistic

Assets (mil SEK) 31.838 33.899 31.132 2.768 (0.265)
ROA (%) -67.575 -76.054 -64.671 -11.383 (-1.091)
Operating cash (mil SEK) -12.409 -14.102 -11.829 -2.273 (-0.634)
Sales (mil SEK) 16.669 15.655 17.016 -1.360 (-0.243)
EBITDA (mil SEK) -13.003 -13.979 -12.669 -1.310 (-0.446)
Profitable 0.145 0.184 0.132 0.052 (1.344)
Observations 490 125 365 490
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Do US Investors Have Deeper
J-Curves?
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Cash from operations

• DiD estimate at t = 5: -26.8 (t-stat=-3.20)
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EBITDA

• DiD estimate at t = 4: -24.6 (t-stat=-3.39)

12



Sales

• DiD estimate at t = 8: 1.4 (t-stat=2.74)
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International expansion

• DiD estimate at t = 7: 0.3 (t-stat=2.95)
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Mechanisms
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Why do USVCs have deeper J-curves?

• We consider four core potential mechanisms:
1. More capital
2. Better networks
3. (More experience)
4. (Different LPs)

• Other stories: selection, cultural differences, etc...
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Why do USVCs have deeper J-curves?

Panel A: Company level: maximum VC firm values

(1) (2) (3) (4) (5)
Full US VC Non-US VC Difference t-statistic

VC firm AUM (mil USD) 1393.326 4019.821 336.321 3683.499∗∗ (2.512)
VC firm co-investors 84.330 183.207 49.038 134.168∗∗∗ (6.959)
VC firm funded startups 127.228 168.595 112.463 56.132∗∗∗ (2.947)
Observations 490 125 365 490

Panel B: Company level: average VC firm values

VC firm AUM (mil USD) 823.910 2119.085 302.681 1816.404∗ (1.972)
VC firm co-investors 53.769 105.826 35.188 70.638∗∗∗ (5.300)
VC firm funded startups 85.872 99.429 81.034 18.395 (1.401)
Observations 490 125 365 490

• VCs of US origin have more capital, larger networks, and more experience 17



Mechanisms

Size of VC Firm
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Size of VC Firm

• Story: USVCs manage more capital, which means they can more easily sustain
losses over a longer time horizon

• Tests:
• Are USVC investments associated with higher capital injections and more follow-on

funding?

• Narrow in on subsamples of investments by either “large” or “small” VCs. Do USVCs
still have deeper J-curves?
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Investment amounts

• DiD estimate at t = 0: 0.6 (t-stat=5.41)
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Follow-on funding (cumulative rounds)

• DiD estimate at t = 8: 1.1 (t-stat=4.05)
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Reinvestments by t = 0 firms (cumulative)

• DiD estimate at t = 8: 2.1 (t-stat=3.52)
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Cash from operations in “large” subsample

• DiD estimate (full): 13.4 (t-stat=0.97)
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EBITDA in “large” subsample

• DiD estimate (full): 10.5 (t-stat=0.81)
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Sales in “large” subsample

• DiD estimate (full): 0.02 (t-stat=0.05)
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Investment amounts in “large” subsample

• DiD estimate (full): 0.4 (t-stat=1.70)
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Follow-on funding (cumulative rounds) in “large” subsample

• DiD estimate (full): 0.1 (t-stat=0.32)
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Cash from operations in “small” subsample

• DiD estimate (full): -5.8 (t-stat=-2.44)
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EBITDA in “small” subsample

• DiD estimate (full): -6.2 (t-stat=-2.60)
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Summary: Larger investors

• Story: USVCs manage more capital, which means they can more easily sustain
losses over a longer time horizon

• Results:
• USVC investments associated with higher capital injections and more follow-on

funding

• Comparing “large” VC investments only, the USVC difference in outcomes largely
disappears

• There is a delayed USVC J-curve in the “small” subsample, which suggests that
investor networks might be important among “small” VCs

→ Investors size is a key mechanism of why USVCs have deeper J-curves
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Mechanisms

Better Networks
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Better networks

• Story: USVCs have better networks, meaning they can drive deeper J-curves as
they can more easily tap into follow-on capital (Nanda and Rhodes-Kropf 2016)

• Tests:
• Do USVCs bring in more new investors?

• Do they bring in more investors conditional on having a “large” or “small” VC?
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New investors

• DiD estimate at t = 8: 1.5 (t-stat=3.29)
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New investors from t = 0 VCs’ network

• DiD estimate at t = 8: 1.5 (t-stat=3.01)
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New investors in “large” VC subsample

• DiD estimate (full): 0.9 (t-stat=2.05)
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New investors from t = 0 VCs’ network in “large” VC subsample

• DiD estimate (full): 0.8 (t-stat=1.77)
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New investors in “small” VC subsample

• DiD estimate (full): 0.5 (t-stat=2.93)
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Investments by large VCs in “small” VC subsample

• DiD estimate (full): 0.1 (t-stat=1.75)
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Summary: Better networks

• Story: USVCs have better networks, meaning they can drive deeper J-curves as
they can more easily tap into follow-on capital (Nanda and Rhodes-Kropf 2016)

• Tests:
• Do USVCs bring in more new investors? YES

• Do they bring in more investors conditional on having a “large” VC? NO

• Do they bring in more investors conditional on having a “small” VC? YES

→ Investor size seems to be of primary importance for deeper J-curves
→ Investor networks allow “small” VCs to have deeper J-curves by bringing in
more follow-on funding
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Takeaways
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Summary

• Massive literature on VC fundraising and capital allocation (Da Rin and Hellmann 2020)

• This paper: First look at the dynamics of capital use in VC investing

• Question: Do USVCs have deeper J-curves compared to non-USVC
investors? And why?
• Challenge: Cash flow data is not available + non-random nature of VC investments

• Our solution: Swedish registry data + stacked DiD design

• So what? Helps policymakers design better policies and stakeholders understand
the industry better
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Policy

1. Recognize the value of loss tolerance: Policy frameworks for ecosystems
should avoid prematurely emphasizing early profitability. Support policies that
enable startups to pursue aggressive, long-term growth strategies—e.g., through
longer runway financing instruments or internationalization support

2. Reform LP mandates in public VC programs: Government-backed VC funds
should allow for staged, risk-tolerant investment strategies and syndication with
large VCs, mimicking the behavior of successful US LPs and GPs

3. Implement a real capital markets union: Europeans save about double that of
Americans (15%), but a third of the savings sit idle in bank accounts. More of
these savings need to go to European startups (would support larger fund sizes in
Europe)
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